The 2015 Nobel Prize in Chemistry was won by Tomas Lindahl, Paul Modrich and Aziz Sancar for mechanistic studies of DNA repair.
Announcing the award, the Nobel Committee said: "From one cell to another, from one generation to the next. The genetic information that governs how human beings are shaped has flowed through our bodies for hundreds of thousands of years. It is constantly subjected to assaults from the environment, yet it remains surprisingly intact. Tomas Lindahl, Paul Modrich and Aziz Sancar are awarded the Nobel Prize in Chemistry 2015 for having mapped and explained how the cell repairs its DNA and safeguards the genetic information."
The committee says that the three laureates work “has provided fundamental knowledge of how a living cell functions and is, for instance, used for the development of new cancer treatments”.
It says that DNA damage occurs all the time and that the reason our genetic material does not disintegrate into complete chemical chaos is that a host of molecular systems continuously monitor and repair DNA.
"The Nobel Prize in Chemistry 2015 awards three pioneering scientists who have mapped how several of these repair systems function at a detailed molecular level.
In the early 1970s, scientists believed that DNA was an extremely stable molecule, but Tomas Lindahl demonstrated that DNA decays at a rate that ought to have made the development of life on Earth impossible. This insight led him to discover a molecular machinery, base excision repair, which constantly counteracts the collapse of our DNA.
Aziz Sancar has mapped nucleotide excision repair, the mechanism that cells use to repair UV damage to DNA. People born with defects in this repair system will develop skin cancer if they are exposed to sunlight. The cell also utilises nucleotide excision repair to correct defects caused by mutagenic substances, among other things.
Paul Modrich has demonstrated how the cell corrects errors that occur when DNA is replicated during cell division. This mechanism, mismatch repair, reduces the error frequency during DNA replication by about a thousandfold. Congenital defects in mismatch repair are known, for example, to cause a hereditary variant of colon cancer."